Resumen:
n the present work we studied the catalytic activity of E.coli β-Gal confined in a nanoporous silicate matrix (Eβ-Gal) at different times after the beginning of the sol-gel polymerization process. Enzyme kinetic experiments with two substrates (ONPG and PNPG) that differed in the rate-limiting steps of the reaction mechanism for their β-Gal-catalyzed hydrolysis, measurements of transverse relaxation times (T2) of water protons through 1H-NMR, and scanning electron microscopy analysis of the gel nanostructure, were performed. In conjunction, results provided evidence that water availability is crucial for the modulation observed in the catalytic activity of β-Gal as long as water participate in the rate limiting step of the reaction (only with ONPG). In this case, a biphasic rate vs. substrate concentration was obtained exhibiting one phase with catalytic rate constant (kcA), similar to that observed in solution, and another phase with a higher and aging-dependent c