BALZARINI MONICA GRACIELA
Artículos
Título:
Hierarchical linear mixed models in multi-stage sampling soil studies
Autor/es:
GILI ADRIANA; NOELLEMEYER ELKE; BALZARINI MÓNICA
Editorial:
SPRINGER
Referencias:
Lugar: Berlin; Año: 2013 vol. 20 p. 237 - 237
Resumen:
he issue of variances of different soil variables prevailing at different sampling scales is addressed. This topic is relevant for soil science, agronomy and landscape ecology. In multi-stage sampling there are randomness components in each stage of sampling which can be taken into account by introducing random effects in analysis through the use of hierarchical linear mixed models (HLMM). Due to the nested sampling scheme, there are several hierarchical sub-models. The selection of the best model can be carried out through likelihood ratio tests (LRTs) or Wald tests, which are asymptotically equivalent under standard conditions. However, when the comparison leads to a restricted hypothesis of variance components, standard conditions are not maintained, which leads to more elaborated versions of LRTs. These versions are not disseminated among environmental scientists. The present study shows the modeling of soil data from a sampling where sites, fields within sites, transects within f