BALZARINI MONICA GRACIELA
Artículos
Título:
Comparison of algorithms to infer genetic population structure from unlinked molecular markers
Autor/es:
PEÑA-MALAVERA, A.; FERNANDEZ, E.; BRUNO, C.; BALZARINI, M.
Revista:
STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY
Editorial:
BERKELEY ELECTRONIC PRESS
Referencias:
Año: 2014 vol. 13 p. 391 - 391
Resumen:
dentifying population genetic structure (PGS) is crucial for breeding and conservation. Several clustering algorithms are available to identify the underlying PGS to be used with genetic data of maize genotypes. In this work, six methods to identify PGS from unlinked molecular marker data were compared using simulated and experimental data consisting of multilocus-biallelic genotypes. Datasets were delineated under different biological scenarios characterized by three levels of genetic divergence among populations (low, medium, and high FST) and two numbers of sub-populations (K = 3 and K = 5). The relative performance of hierarchical and non-hierarchical clustering, as well as model-based clustering (STRUCTURE) and clustering from neural networks (SOM-RP-Q). We use the clustering error rate of genotypes into discrete sub- populations as comparison criterion. In scenarios with great level of divergence among genotype groups all methods perf