VILLARREAL MARCOS ARIEL
Artículos
Título:
Improved prediction of bilayer and monolayer properties using a refined BMW-MARTINI force field
Autor/es:
VIRGINIA MIGUEL; MARIA ANGÉLICA PERILLO; MARCOS VILLARREAL
Revista:
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES
Editorial:
ELSEVIER SCIENCE BV
Referencias:
Lugar: Amsterdam; Año: 2016
ISSN:
0005-2736
Resumen:
oarse-grained (CG) models allow enlarging the size and time scales that are reachable by atomistic molecular dynamics simulations. A CG force field (FF) for lipids and amino acids that possesses a polarizable water model has been developed following the MARTINI parametrization strategy, the BMW-MARTINI [1]. We tested the BMW-MARTINI FF capability to describe some structural and thermodynamical properties of lipid monolayers and bilayers. We found that, since the surface tension values of oil/water interfaces calculated with the model are not correct, compression isotherms of lipid monolayers present artifacts. Also, this FF predicts DPPC and DAPC bilayers to remain in the Lα phase at temperatures as low as 283 K, contrary to the expected from their experimental Tm values. Finally, simulations at constant temperature of bilayers of saturated lipids belonging to PC homologous, showed an increase in the mean molecular area (Mma) upon increasing the chain length, inversely to the exp